A
PROJECT REPORT

on

Glendix: A Plan 9 / Linux

Distribution

for partial fulfillment for the degree of
Bachelor of Technology

1

Computer Engineering

(2007-08)

Contents

1 Introduction

1.1 Plan 9
1.2 Linuxo
1.3 What is Glendix?

2 Review

21 GNUws. Plan 9.
2.2 Possible Approach o
2.2.1 Source Compatibility
2.2.2 Binary Compatibility
2.3 Steps of Operation

3 Methodology

3.1 Loader
311 aout
3.1.2 How a File Gets Executed in Linux
3.1.3 Registration of Binary Formats
3.1.4 The Binary Parameters
3.1.5 Memory Layout and Padding
316 TopofStack.

3.2 System Call Handler
3.2.1 System Call Behavior in Linux
3.2.2 System Call Behaviorin Plan9
3.2.3 Programmed Exception Handling

3.3 System Call Implementation

4 Conclusions and Future Work

11
11
11
12
14
15
16
17
18
19
20
20
21

25

List of Figures

1.1 Roleofakernel
1.2 Composition of Glendix
3.1 Memory layout for a.out

iii

List of Tables

2.1

3.1
3.2
3.3

Comparison of GNU & Plan 9 applications 8
a.out symbol types 13
32-Bit addressing forms with ModR/M byte 18
Plan 9 system calls L. 22

ABSTRACT

GNU/Linux is a popular free operating system in use today. GNU/Linux strives
to be strictly compliant with POSIX standards, and is thus tied down with sev-
eral requirements, ceasing to be innovative as far as operating system design is

concerned.

Plan 9 from Bell Labs, on the other hand, was designed to be a from-scratch
successor to UNIX. The Plan 9 operating system offers several new features that
are both useful and efficient in today’s era of personal computing: synthetic file
systems, per-process namespaces and a fresh look at graphics and text editors are

just a few.

The Linux kernel, however, is far more popular than Plan 9’s and is better sup-
ported by developers and companies alike. Besides, Linux also has a vibrant
community backing it and supports a lot more commodity hardware. This project
aims to combine Plan 9 user-space utilities with the Linux kernel, to offer today’s

developer an exciting environment combining the best features of both worlds.

ACKNOWLEDGEMENTS

This project was born from earlier open source projects, so we would like to begin
by thanking the Plan 9 and Linux communities for giving us such great software
and support to work with. Specifically, we would like to thank Charles Forsyth,
Russ Cox, Rene Herman and Al Viro, who contributed significantly to the project

by offering their insightful comments, suggestions and help.

We would also like to thank Dr. Vijaylaxmi for her timely feedback and suggestions
on the project. We would especially like to thank Dr. M.S. Gaur who kindly agreed

to supervise the project and has provided unsurpassable support for our work.

Chapter 1

Introduction

An operating system is probably the most important component in any computer.
Operating systems research is very important to the health of computing, as it

forms the foundation for all other software.

When the term ‘operating system’ is used, we generally think of a complete package
that allows us to use our computer. Technically, we may split an operating system

into two synergic, yet distinct components:

e The kernel: This is the layer that is responsible for directly controlling
hardware and providing a abstraction over all the different devices connected
to a computer system. The kernel is also responsible for providing a basic
framework using which software can be written. Some of the important func-
tions of a kernel include - providing device drivers, managing & scheduling

processes and implementing a network stack.

e User-space applications: These are applications with which the users
directly interact. They use the abstracted interface provided by the kernel
and provide useful functionality to the end user. They may or may not be
considered as system software. Some examples are - C compiler, text editor,

interactive shell and window manager.

A graphical depiction of role of a kernel in a traditionally ‘layered’ operating

system in shown in Figure 1.1.

Before we delve into the details of our project, it may be worthwhile to first

introduce the technologies that we are basing our project upon.

1

2 Chapter 1 Introduction

) ST

applications]

kernel

1

CPU memory | | devices

FIGURE 1.1: Role of a kernel

1.1 Plan 9

Plan 9 is the research successsor to Unix developed by Bell Labs as an attempt
to build a system that was centrally administered and cost-effective using cheap
modern microcomputers as its computing elements. The idea was to build a time-
sharing system out of workstations, but in a novel way. Different computers would
handle different tasks: small, cheap machines in people’s offices would serve as
terminals providing access to large, central, shared resources such as computing
servers and file servers. For the central machines, the coming wave of shared-
memory multiprocessors seemed obvious candidates. The main motto was: “To
build a UNIX out of a lot of little systems, not a system out of a lot of little
UNIXes” [6].

Hence Plan 9 incorporates and introduces lot of new things which are non trivial:

e Everything is a file: Resources are named and accessed like files in a
hierarchical file system. This used to be a trivial thing which every OS
incorporated, but as systems “progressed” the basic idea began to be lost.
New complications, namely: Berkeley sockets, the X Window System and
use of hardware-specific control mechanisms like zoctl were introduced due to
claims that “everything did not map neatly to a file”. Therefore, in Plan 9,
everything is file witout exception [4]. You can read and write to any device

or file using common functions.

e The 9P protocol: Since Plan 9 depends heavily on files, a simple file
protocol was required. Plan 9 aims to provide users with a workstation-
independent working environment. 9P (also know as Styx) [8] is the standard

protocol to access all resources (local or remote) on Plan 9.

Chapter 1 Introduction 3

e Unicode: Plan uses UTF-8 encoding for all text in the system [9]. UTF-8
is a unicode encoding that is backward compatible with ASCII.

e Union directories: Plan 9 also introduced the idea of union directories,
directories that combine resources across different media or networks, bind-
ing transparently to other directories. For example, another computer’s /bin
(applications) directory can be bound to one’s own, and then this directory
will hold both local and remote applications, which the user can access trans-

parently. Unix-style links are environment variables are no longer required!

e Namespaces: Disjoint hierarchies provided by different services are joined
together into a single private hierarchical file name space in Plan 9 [7]. Also,
every process has its own namespace, this increasing modularity, improving

security and making application development a whole lot easier.

Plan 9 is also a lot smaller and lighter than most other operating systems. A
standard Plan 9 ISO is around 250MB, which includes a window manager, text
editor, C compiler and other development tools. Since Plan 9 is mainly a research
vehicle, we don’t usually see it being used on standard desktop environments, or

even regular servers.

Many of Plan 9’s ideas have been adopted by other operating systems. For in-
stance, the /proc synthetic filesystem (used to probe into internal kernel data
structures) has been implemented by Linux, and the concept of union directories

is catching on too.

The Plan 9 operating system includes both a kernel and a set of user-space appli-

cations.

1.2 Linux

The term “Linux” is actually a little ambiguous. As discussed before, an operating
system can refer to both the kernel as well as user-space applications. Linux is a
kernel, the portion responsible for managing system resources. Linux, by itself, is
not of much use - you’d need a whole set of user-space applications to be able to

use the computer.

The Linux kernel was initially conceived and assembled by Linus Torvalds in 1991.

Early on, the MINIX community contributed code and ideas to the Linux kernel.

4 Chapter 1 Introduction

At the time, the GNU Project had created many of the components required for
a free software operating system, but its own kernel, GNU Hurd, was incomplete
and unavailable. The BSD operating system had not yet freed itself from legal
encumbrances. This meant that despite the limited functionality of the early
versions, Linux rapidly accumulated developers and users who adopted code from
those projects for use with the new operating system. Today, the Linux kernel has

received contributions from thousands of programmers.

Hence, when we refer to Linux as a complete operating system, we include all the
user-space applications provided by GNU. By putting Linux and GNU utilities to-
gether, we obtain a “Linux distribution”, a complete and usable operating system.

Prominent Linux distributions include Debian, Ubuntu, Gentoo and Fedora.

Even though the code for Plan 9 is licensed under an open-source licenses, Linux
is one of the most prominent examples of successful open source software. This
has resulted in it being adopted by a large amount of developers and corporations
alike. The popularity of Linux, has in turn, significantly improved its hardware
support - Linux runs on a lot more hardware than the Plan 9 kernel. However,
Linux is simply a clone of Unix, and offers nothing new in terms of functionality

or innovation.

Any further references to the word ‘Linux’ in this report shall refer to the kernel

only.

1.3 What is Glendix?

Now that we know what Plan 9 and Linux are, it’s time to discuss Glendix. The
name of our project is derived from the two words ‘Glenda’ and ‘Tux’. Glenda the
rabbit is the mascot of the Plan 9 operating system, while Tux the penguin is the

mascot for the Linux kernel.

We believe Plan 9 has a lot to offer in terms of features and functionality to the end-
user. However, while the Plan 9 kernel is an excellent example of kernel design,
it lacks in terms of device drivers. Plan 9 does not run on several commodity
hardware, thereby severely reducing its adoption rate. Most people run Plan 9
in virtual machines, not on actual hardware. Linux, on the other hand has had
years of work by thousands of developers put into it. It runs on significantly larger

amounts of hardware than the Plan 9 kernel.

Chapter 1 Introduction 5

In this project, we decouple Linux from GNU utilities, and port Plan 9 user-space
applications to run on the Linux kernel. In summary, we are combining the Plan 9
user-space with the Linux kernel-space - resulting in a “hybrid” operating system.
We think this would offer the best of both worlds - great hardware support with

a cutting-edge application development environment.

Figure 1.2 represents a graphical depiction of the Glendix’s composition.

Userspace | Kernelspace

F1GURE 1.2: Composition of Glendix

The primary goal of the project is to create a Linux based operating system that
includes the most important user-space applications from Plan 9. For brevity, we
restrict our work to only the Intel x86 architecture. All technical discussions in

this report apply only to that platform.

Chapter 2

Review

In order for us to proceed on the project, it was important to understand all
existing technologies thoroughly and convince ourselves of the feasibility of our
stated objectives. In this chapter, we present to you a review of all software

related to the project.

2.1 GNU vs. Plan 9

The first and foremost question that we needed to ask ourselves was: “Why is
there a need to replace GNU”? While GNU software certainly has its merits (such
as being the first ‘free software’ suite), it has several disadvantages that we found
are limiting in certain applications. GNU software is widely being used in desktop
and server systems, where memory and processing power is in plenty, but is not

even considered for embedded applications. Why?

Before we can answer that question, we must begin with an assumption: Com-
plexity is bad. When a computer program can be kept simple, it must. Given two
pieces of software that perform the same task, the one with less complexity should
be preferred as it will be more maintainable, portable, and in general be easy to

develop. [5]

GNU based software severely lacks in this respect. All of GNU software is unneces-
sarily complex, in the name of portability. On the other hand, Plan 9 applications
are equally portable and perform the same functions, but are drastically less com-
plex. To put this into context, we present to you a comparison of the lines of code

in the source of various GNU and Plan 9 applications in Table 2.1

7

8 Chapter 2 Review

TABLE 2.1: Comparison of GNU & Plan 9 applications

Application Lines of Code
GNU | Plan 9
cat 786 36
echo 276 40
wce 695 309
tee 219 75
Is 4489 321
mv 449 236
tar 17352 1267
C Compiler 843322 | 49447
C Library 790322 | 20039
Debugger 376392 | 5514

As you can see, all Plan 9 applications are much smaller than their GNU counter-
parts. The difference is even more significant as the complexity of the task itself
increases, the GNU C Compiler (GCC) source code is 17 times KenCC’s (the Plan
9 suite of C compilers) size! We would like to emphasize here that Plan 9 supports
just as many processor architectures as GNU, and provides the same set of features
(if not more). Clearly the complexity of GNU based software is larger than Plan

9’s by a staggering amount.

Additionally, all Plan 9 binaries are statically linked; which means that all code
needed to execute that particular program is present in the executable. The exe-
cutable only needs to be laid out in memory, and no additional requirements are
necessary. GNU binaries, on the other hand, are usually dynamically linked; which
means that the portions of library code used need to be loaded at runtime. While
the debate of whether static or dynamic libraries are better rages on, it is generally
accepted that statically linked binaries are easier to debug and are preferred for

embedded applications.

2.2 Possible Approach

After a review of the current state of Plan 9 applications and the Linux kernel,
there were two basic approaches to solving the problem of running Plan 9 appli-

cations on Linux. We discuss both approaches here.

Chapter 2 Review 9

2.2.1 Source Compatibility

An existing software package called ‘Plan 9 from User Space’ (also known as
‘plan9port’) is a port of many Plan 9 programs from their native Plan 9 envi-
ronment to Unix-like operating systems. The primary goal of this project is to
allow Unix users to benefit from Plan 9 applications. Development in the ‘Plan
9’ style is not very polished in plan9port, as source-level compatibility is (as of
yet) not entirely possible. You cannot, for example, take the source for a Plan 9

program and recompile it within a plan9port environment and expect it to work.

One of the approaches we reviewed early on during the project was achieving
source-level compatibility for all Plan 9 applications by building on plan9port. The
most significant advantage for this type of approach is that Plan 9 applications will
be able to run on a variety of Unix clones (not only Linux) just by a recompile of
the program. These include operating systems like FreeBSD, Mac OS X, NetBSD,
OpenBSD and SunOS.

However, this approach means we would have to write POSIX equivalents for
all source libraries offered by Plan 9. This seemed like a step backward. The
additional constraint of having to recompile the program in the new environment

was not very appealing, and thus we chose to reject this approach.

2.2.2 Binary Compatibility

A more appealing solution was to achieve binary-level compatibility of all Plan 9
applications. The mantra here was “compile once, execute everywhere”. At the
end of the project, we wanted to ensure that it wouldn’t matter where the program

was compiled. The program should run as expected on both Plan 9 and Linux.

While this approach seems ideal, it turns out that Linux actually offers us the
flexibility to achieve this kind of binary-level compatibility. In order for this ap-
proach to work, we have to make Linux behave exactly as a Plan 9 kernel would
when requested by a Plan 9 application. After all, executables are just a series of
instructions for the CPU.

The only channel of interaction between a user-space application and the kernel is
the system call. System calls are the primary entry point for user-space applica-
tions to notify the kernel that they want something done. If we can program Linux

to intercept these system calls and perform the required action before returning

10 Chapter 2 Review

a value, user-space applications will be oblivious to the fact that the underlying
kernel is Linux, not Plan 9! We decided to adopt this approach because it was

interesting and seemed to achieve our stated goals in a clean manner.

2.3 Steps of Operation

In order to achieve binary-level compatibility, we need to write code that performs

the following:

e Load the executable: Write a loader that understands the Plan 9 exe-
cutable format and loads it into memory. The loader also sets the registers

to an appropriate state before allowing the CPU to process the instructions.

e Intercept system calls: Whenever an instruction signaling the request of

a system call is executed by the CPU, it must be intercepted and handled.

e Implement all system calls: The actual system call functionality as pro-
vided by the Plan 9 kernel must be performed by the Linux kernel, and an

appropriate return value returned.

In the following chapter, we discuss the methodology by which we achieve the

above.

Chapter 3

Methodology

3.1 Loader

In this section we describe the Plan 9 executable format [1] (known as a.out, not
to be confused by another executable format of the same name used in old versions
of Unix). We then proceed to discuss how we wrote a loader for the Linux kernel

to parse and prepare for execution of executables in the a.out format.

3.1.1 a.out

An executable Plan 9 binary file has up to six sections: a header, the program
text, the data, a symbol table, a PC/SP offset table (MC68020 only), and finally a
PC/line number table. The header, given by the structure in Listing 3.1, contains

4 byte integers in big-endian order.

Sizes are expressed in bytes. The size of the header is not included in any of the

other sizes.

When a Plan 9 binary file is executed, a memory image of three segments is set
up: the TEXT segment, the DATA segment, and the STACK. The text segment
begins at a virtual address which is a multiple of the machine-dependent page
size. The text segment consists of the header and the first text bytes of the binary
file. The entry field gives the virtual address of the entry point of the program.
The data segment starts at the first page-rounded virtual address after the text
segment. It consists of the next data bytes of the binary file, followed by bss bytes

initialized to zero. The stack occupies the highest possible locations in the core

11

12 Chapter 3 Methodology

image, automatically growing downwards. The BSS segment may be extended by

the brk_ system call.

typedef struct Exec {

long magic; /% magic number */

long text; /% size of text segment */

long data; /% size of initialized data */

long bss; /% size of uninitialized data */

long syms; /% size of symbol table */

long entry; /% entry point */

long spsz; /* size of pc/sp offset table */

long pcsz; /* size of pc/line number table */
} Exec;
#define _MAGIC(b) ((((4*xb)+0)*b)+7)
#define A_MAGIC _MAGIC(8) /* 68020 x*/
#define I_MAGIC _MAGIC(11) /* intel 386 */
#define J_MAGIC _MAGIC (12) /* intel 960 */
#define K_MAGIC _MAGIC(13) /* sparc */
#define V_MAGIC _MAGIC (16) /* mips 3000 */
#define X_MAGIC _MAGIC(17) /* att dsp 3210 */
#define M_MAGIC _MAGIC(18) /% mips 4000 */
#define D_MAGIC _MAGIC(19) /* amd 29000 */
#define E_MAGIC _MAGIC (20) /* arm 7something */
#define Q_MAGIC _MAGIC(21) /* powerpc */
#define N_MAGIC _MAGIC (22) /* mips 4000 LE x/
#define L_MAGIC _MAGIC(23) /* dec alpha */

LISTING 3.1: a.out header structure

The next syms (possibly zero) bytes of the file contain symbol table entries, each
laid out as a 4-byte wvalue, followed by a byte of type and ending with a variable
length null-terminated string name. The wvalue is in big-endian order. The type
field is one of the characters in Table 3.1 with the high bit set. The symbols in the
symbol table appear in the same order as the program components they describe.

The symbol table is used only by the debugger and is not laid out in memory.

3.1.2 How a File Gets Executed in Linux

Linux already supports a variety of executables - ranging from ELF (the native
Linux executable format) to COFF. Hence, the foundation for adding support for
a new executable format had already been laid, we simply had to use the tools
that the kernel offered us. [3]

One of the roles that kernel modules can accomplish is adding new binary formats
to a running system, so we chose to write a kernel module for the Plan 9 executable

format. The single biggest advantage of writing a kernel module for this purpose

Chapter 3 Methodology 13

TABLE 3.1: a.out symbol types

Character | Type

text segment symbol

static text segment symbol

leaf function text segment symbol
static leaf function text segment symbol
data segment symbol

static data segment symbol

bss segment symbol

static bss segment symbol
automatic (local) variable symbol
function parameter symbol

Ol |olm e~ e 3

is that we didn’t have to recompile the kernel and reboot every-time we made
a change to the loader - thanks to Linux’s dynamic module loading/unloading

facilities.

Let’s take a look at how the ezec system call is implemented in Linux. This is an
interesting part of the kernel, as the ability to execute programs is at the basis of

system operations.

The entry point of exec lives in the architecture-dependent tree of the source files,
but all the interesing code is part of fs/exec.c. Within fs/ezec.c, the toplevel
function, do_execve(), is less than fifty lines of code in length. Its role is checking
for errors, filling the “binary parameter” structure (linux_binprm) and looking for
a binary handler. The last step is performed by search_binary_handler(), another
function in the same file. The magic of do_ezecve() is contained in this last function
which is very short. Its job consists of scanning a list of registered binary formats,
passing the binprm structure to all of them until one succeeds. If no handler is able
to deal with the executable file, the kernel tries to load a new handler via kerneld
and scans the list once again. If no binary format is able to run the executable
file, the system call returns the ENOEXEC error code (“Exec format error”).

The main problem with this kind of implementation is in keeping Linux compatible
with the standard Unix behaviour. That is, any executable text file that begins
with #! must be executed by the interpreter it asks for, and any other executable
text is run by /bin/sh. The former issue is easily dealt with by a binary format
specialized in running interpreter files (fs/binfmt_script.c), and the interpreter it-
self is run by calling search_binary-handler() once again. This function is designed

to be reentrant, and binfmt_script checks against double invocation. The latter

14 Chapter 3 Methodology

issue is mainly an historical relic and is simply ignored by the kernel. The program

trying to execute the file takes care of it.

All the magic handling of data structures needed to replace the old executable
image with the new one is performed by the specific binary loader, based on
utility functions exported by the kernel. We need to write precisely this type of

loader.

3.1.3 Registration of Binary Formats

The implementation of ezec is interesting code, but Linux has more to offer: regis-
tration of new binary formats at run time. The implementation is quite straightfor-
ward, although it involves working with rather elaborate data structures - either
the code or the data structures must accomodate the underlying complexities;

elaborate data structures offer more flexibility than elaborate code.

The core of a binary format is represented in the kernel by a structure called

linuz_binfmt, which is declared in the linuz/binfmts.h file, also given in Listing 3.2.

struct linux_binfmt {
struct linux_binfmt *next;
long *use_count;
int (*¥load_binary)(struct linux_binprm *, struct pt_regs *);
int (*load_shlib) (int £fd);

int (*core_dump) (long signr, struct pt_regs *);

LISTING 3.2: Linux binary format structure

The three functions, or “methods”, declared by the binary format are used to
execute a program file, to load a shared library and to create a core file. The next
pointer is used by search_binary_handler(), while the use_count pointer keeps track
of the usage count of modules. Whenever a process p is executing in the realm
of a modularized binary format, the kernel keeps track of use_count to prevent

unexpected removal of the module.

Of the three methods, we need only to implement load_binary. load_shlib is not re-
quired as all Plan 9 binares are statically linked, as discussed before; and core_dump
is mainly used to generate core dumps readable by the GNU debugger (which we

do not want to use).

Chapter 3 Methodology 15

3.1.4 The Binary Parameters

In order to implement a binary format that is of some use, the programmer must
have some background information about the arguments that are passed to the
loading function, i.e., load_binary. The first such argument contains a description
of the binary file and the parameters, and the second is a pointer to the processor

registers.

The second argument is useful because we must initialize the registers associated
with the current process to a sane state. In particular, the instruction pointer
must be set to the address where execution of the new program must begin. The
function start_thread is exported by the kernel to ease setting up the instruction

pointer.

The first argument, a linux_binprm structure contains the following fields:

e char buf[128]: This buffer holds the first bytes of the executable image. It
is usually looked up by each binary format in order to detect the file type.
We use this buffer to quickly check if an executable of the Plan 9 a.out format

or not.

e unsigned long page[MAX_ARG_PAGES]: This array holds the ad-
dresses of data pages used to carry around the environment and the argument
list for the new program. The pages are only allocated when they are used;

no memory is wasted when the environment and argument lists are small.
The macro MAX_ARG_PAGES is declared in the binfmts.h header.

e unsigned long __user p: This is a “pointer” to data kept in the pages just
described. Data is pushed to the pages from high addresses to low ones, and
p always points to the beginning of such data. Binary formats can use the
pointer to play with the initial arguments that are passed to the program
being executed. It’s interesting to note that p is a pointer to user-space
addresses, and it is expressed as unsigned long __user to avoid an undesired
de-reference of its value. When an address represents generic data (or an
offset in the memory “array”) the kernel often considers it a long integer -

like kernel-space addresses.
e struct inode *inode: This inode represents the file being executed.

e int e uid, e gid: These fields are the effective user and group ID of the

process executing the program.

16 Chapter 3 Methodology

e int argc, envc: These values represent the number of arguments passed to
the new program and the number of environment variables. Plan 9 doesn’t

use environment variables, so we ignore envc.

e char *filename: This is the full pathname of the program being executed.
This string lives in kernel space and is the first argument received by the
ezxecve system call. Although the user program won’t know its full pathname,
the information is available to the binary formats, so they can play games

with the argument list.

e int dont_iput: This flag can be set by the binary format to tell the upper
layer that the inode has already been released by the loader.

3.1.5 Memory Layout and Padding

Once we've confirmed that the given executable is indeed in the Plan 9 format,
we begin to load the contents of file into memory as dictated by the a.out format.

Figure 3.1 shows the required memory layout for the executable.

Upper | GB reserved for kernel

0xC0000000 !:Start of stack, srows downwards
«——Start of BSS, srows upwards

Next page .

aligned «——DATA section begins

address

0x00001020
0x00001000

«———TEXT section begins

«<———Executable header

F1GURE 3.1: Memory layout for a.out

If you look at the figure, you’ll note that there is a gap between the TEXT and
DATA sections in memory, because of page-alignment. In the executable file,
however, all sections are one after the other, so while copying the contents into

memory we need to create the extra padding. Therein, lies the rub.

Chapter 3 Methodology 17

Linux follows a lazy memory allocation mechanism, where memory is allocated
“just in time”. Hence, all Linux executables use the do_mmap() function exported
by the kernel to map an executable file to memory, the memory allocated may not
actually exist until runtime. However, we cannot do that as the gap does not exist

in the file, and memory mapping does not work on non page-aligned offsets.

As a workaround to this problem, we use Linux’s interpreter capabilities to invoke
a user-space program whenever an authentic a.out executable is found. This user-
space program creates this extra padding in the file itself, which may then be
memory mapped. This padding program also turned out to be extremely useful

in the later stages of the project, as will be discussed in the next section.

3.1.6 Top of Stack

When we said earlier that system calls were the only way for Plan 9 user-space
applications to interact with the kernel, we lied. The Plan 9 kernel initializes
and maintains a special structure called Tos (Listing 3.3), which is also used to

exchange data between the kernel and user-space applications.

struct Tos {

struct /% Per process profiling */

{
Plink *pp; /* known to be 0(ptr) */
Plink xnext; /¥ known to be 4(ptr) */
Plink *last;
Plink xfirst;
ulong pid;
ulong what;

} prof;

uvlong <cyclefreq; /* cycle clock frequency if there ts one, O otherwise */
vliong kcycles; /* cycles spent in kernel */

vliong pcycles; /% cycles spent in process (kernel + user) */

ulong pid; /% might as well put the pid here */

ulong clock;

/* top of stack is here */

LisTING 3.3: TOS Structure

The Plan 9 kernel intializes this area above the user-space stack and stores the
address in the accumulator, from which the user-space application retrieves it and
stores in a global variable _tos. This works great in Plan 9, but Linux resets the

accumulator immediately after the loader finishes (to signal the return value of

18 Chapter 3 Methodology

exec), so we can’t use that register to notify user-space applications of the Tos

address.

As a workaround, we used the padding program to mangle the instruction that
fetched the address from FAX (the accumulator) and changed it to fetch the
address from EBX instead (Linux does not modify FBX between the loader and
the executable). The opcode for the MOV instruction is 0z89. The first instruction

in a Plan 9 user-space application, therefore, would usually be:

89 05 XX XX XX XX

where 'xx xx xx xx’ denotes a 32-bit address (global variable _tos in the DATA

section). We change this instruction to:

89 1D xx xxX XX XX

in accordance with x86 assembly opcodes (Table 3.2) [2].

TABLE 3.2: 32-Bit addressing forms with ModR /M byte

[r32(/r) | EAX | ECX | EDX | EBX | ESP | EBP | ESI | EDI |
| Address | Mod | R/M | Value of ModR/M Bytes (in Hexadecimal) |

[EAX] 00 | 000 | 00 | 08 | 10 | 18 | 20 | 28 | 30 | 38
[ECX] 00I || o | 09 | 1r | 19 | 21 | 29 | 3L | 39
[EDX] 010 | 02 | OA | 12 | 1A | 22 | 2A | 32 | 3A
[EBX] 01T | 03 | OB | 13 | 1B | 23 | 2B | 33 | 3B
B 100 | 04 | 0C | 14 | 1C | 24 | 2C | 34 | 3C
disp32 101 | 05 | oD | 15 | 1D | 25 | 2D | 35 | 3D
[EST] 110 | 06 | OE | 16 | 1E | 26 | 2B | 36 | 3E
[EDI] 111 | 07 | OF | 17 | IF | 27 | 2F | 37 | 3F

3.2 System Call Handler

Once the loader had been written, the next major task was to be able to intercept
system calls. Let us see how system calls are invoked by user-space applications
in both Linux and Plan 9.

Chapter 3 Methodology 19

3.2.1 System Call Behavior in Linux

Linux maintains dual modes, namely: user mode and kernel Mode. System calls

provide the means for a user program to ask the operating system to perform task

reserved for the operating system on the user program’s behalf. The various steps

to invoke a system call in Linux are:

1. System calls must be invoked by executing the INT 0x80 assembly instruc-

tion, which raises the programmed exception having vector 128.

. When a user mode process invokes a system call, the CPU switches to Kernel

Mode and starts the execution of a kernel function.

. The calling process passes a parameter called the system call number to

identify the required system call; the FAX register is used for that purpose.

. The kernel saves the contents of most registers in the Kernel Mode stack.
Hence, other parameters to the system call (if required) are put on the

registers by the calling processing before giving the interrupt.

. The kernel handles the system call by invoking a corresponding C function

in kernel-space called the system call service routine.

. The handler is exited when the system call finishes, and the registers are

restored. The return value of the system call is stored in the accumulator,

where it can be picked up by the user-space application.

As an example, consider the “Hello World” program in pure assembly for Linux

(Listing 3.4)

section .data
hello: db ’Hello world!?’,10 ; ‘Hello world!’ plus a linefeed character
hellolen: equ $-hello ; Length of the ‘Hello world!’ string
section .text

global _start

_start:
mov eax,4 ; The system call for write (sys_write)
mov ebx,1 ; File descriptor 1 - standard output
mov ecx,hello ; Put the offset of hello in ecx
mov edx,hellolLen ; helloLen is a constant
int 80h ; Call the kermnel
mov eax,1l ; The system call for exit (sys_exit)
mov ebx,O0 ; Exit with return code of 0 (no error)
int 80h

LisTING 3.4: HW in assembly for Linux

20 Chapter 3 Methodology

3.2.2 System Call Behavior in Plan 9

Thankfully, the method of system call invocation by Plan 9 user-space applications
is not very different from that described earlier. Plan 9 differs from the Linux
procedure in only two big ways:

1. Plan 9 uses programmed exception vector 40 (0x64) to notify the kernel.

2. Plan 9 applications store arguments for the system call on the user-space

stack, just like for any other function call.

An example program for Plan 9 will make the differences clear. (Listing 3.5)

DATA string<>+0(SB)/8, $"Hello\n\z\z"
GLOBL string<>+0(SB), $8

TEXT _main+0(SB), 1, $0
MOVL $1, 4(sSp)

MOVL $string<>+0(SB), 8(SP)
MOVL $7, 12(SP)

MOVL $-1, 16(SP)

MOVL $-1, 20(SP)

MOVL $51, AX

INT $64

MOVL $string<>+0(SB), 4(SP)
MOVL $8, AX

INT $64

LisTiING 3.5: HW in assembly for Plan 9

3.2.3 Programmed Exception Handling

Unfortunately, the Linux kernel was not built to support the interception of differ-
ent interrupt vectors in a kernel module. This initialization is done at boot time,

hence, for this part of the project, we had to directly edit the kernel source.

arch/x86/kernel/traps_32.c is where programmed exception gates are created. The
routine set_system_gate() is provided by the kernel to set an Interrupt Service
Routine (ISR) for a particular exception vector. We used that function to set a gate

for interrupt vector 40. As for the Interrupt service routine, we copied the same

Chapter 3 Methodology 21

ISR as for interrupt 80, except that we call a custom system call implementation

at the end: sys_pland.

Let us analyze what happens in this case. The ISR copies the register values to
the kernel stack as usual, and triggers sys_plan9 with the appropriate arguments.
We use the EBP register to obtain the stack pointer in user-space and extract the
system call arguments by using the __get_user() routine provided by Linux. These
arguments are in turn passed to an internal system call implementation (most of
the time, a Plan 9 system call maps directly to one provided by Linux) and the

value returned accordingly.

A snippet of the sys_plan9 function is provided in Listing 3.6.

asmlinkage long sys_plan9(struct pt_regs regs)

{
/% retrieving syscall arguments from user-space stack */
unsigned long *addr=(unsigned long *)regs.esp;
/% check syscall number and invoke appropriate system call service routine */
switch (regs.eax) {
case 51: /* purite */
argl = *(++addr);
arg2 = *(++addr);
arg3 = *(++addr);
addr = addr + 2;
offset = (loff_t) *(addr);
if (offset == Oxffffffff)
retval = sys_write(argl, (const char __user *)arg2, arg3);
else
retval = sys_pwrite64(argl, (const char __user *)arg2,
arg3, offset);
break;
}
3

LISTING 3.6: System call routing

3.3 System Call Implementation

Table 3.3 lists all the system calls provided by the Plan 9 kernel. Not all Plan 9

system calls map directly to Linux equivalents. We focused only on implementing

22 Chapter 3 Methodology

system calls that were essential to get a basic Plan 9 toolchain running on Linux.
We implemented 15 of the 39 system calls (the calls beginning with a ‘. are not
to be implemented, they are legacy calls from previous editions of Plan 9), and

got a surprising number of applications to run.

TABLE 3.3: Plan 9 system calls

Number | System Call | Number | System Call
0 | sysrl 26 | _wstat
1 | _errstr 27 | fwstat
2 | bind 28 | notify
3 | chdir 29 | noted
4 | close 30 | segattach
5 | dup 31 | segdetach
6 | alarm 32 | segfree
7 | exec 33 | segflush
8 | exits 34 | rendezvous
9 | _fsession 35 | unmount
10 | fauth 36 | _wait
11 | _fstat 37 | semacquire
12 | seghrk 38 | semrelease
13 | -mount 39 | seek
14 | open 40 | fversion
15 | _read 41 | errstr
16 | oseek 42 | stat
17 | sleep 43 | fstat
18 | _stat 44 | wstat
19 | rfork 45 | fwstat
20 | _write 46 | mount
21 | pipe 47 | await
22 | create 50 | pread
23 | fd2path 51 | pwrite
24 | brk_ 25 | remove

Some system calls require us to write completely new code, as no existing system
call (of the 300-odd ones that Linux offers!) provides the same functionality. An
example is the sys_fd2path call, which returns the absolute path corresponding to
a file descriptor (Listing 3.7).

Chapter 3 Methodology

23

asmlinkage long sys_fd2path(int f£d,

{

int error;
struct vfsmount *mnt, *rootmnt;
struct dentry *dentry, *root;

struct file *file;

char __user *buf, unsigned long size)

char *page = (char *) __get_free_page (GFP_USER);

if (!page)
return -ENOMEM;

file = fget (£fd);
if (!'file)
return -EBADF;

mnt = mntget (file->f_vfsmnt);
dentry = dget(file->f_dentry);
fput (file);

read_lock (¤t->fs->lock);

rootmnt = mntget (current->fs->rootmnt);

root = dget(current->fs->root);

read_unlock (¤t->fs->lock);

error = -ENOENT;

/* Has the file been unlinked? */

spin_lock (&dcache_lock);

if (dentry->d_parent == dentry ||
unsigned long len;

char * cwd;

'list_empty (&dentry->d_hash)) {

cwd = d_path(dentry, mnt, root, rootmnt, page, PAGE_SIZE);

spin_unlock (&dcache_lock);

error = -ERANGE;
len = PAGE_SIZE + page - cwd;
if (len <= size) {

error = len;

if (copy_to_user (buf, cwd,

error = -EFAULT;
}
} else
spin_unlock(&dcache_lock);

dput (dentry);
mntput (mnt) ;
dput (root);
mntput (rootmnt) ;

free_page ((unsigned long) page);

return error;

len))

LisTING 3.7: The fd2path System Call

Chapter 4
Conclusions and Future Work

We were successfully able to run a number a number of Plan 9 applications on
Linux using the given methodology. Some of the prominent utilities that were
tested are: 8¢ (The C compiler for x86), cat, echo, cal (Calendar), dc (Precision
calculator), cb (Code beautifier), diff, grep, mk (Makefile-like system for Plan 9),

tar and we.

We believe that this will provide an excellent base for developers to write large
distributed applications and embedded system, with all the advantages mentioned

in the introduction of this report.

Our work, however, does not end here. We hope to continue implementing more
system calls, and introduce some of the more interesting features of Plan 9 to

Linux:

e Per-process namespaces: The CLONE_NEWNS flags for the Linux clone

system call may come in handy.

e Window-manager: For Rio (the Plan 9 window manager) to work in Linux,
we need to create a synthetic filesystem in /dev/draw that wraps over either

the X11 system or Linux’s native framebuffer.

e Other applications: such as awk and sam also depend on certain virtual
filesystems which have to be created on the kernel side. This may not be a

big problem, as Linux already provides /proc as a synthetic filesystem.

e Provide Plan 9-like F'S services: especially /net as a wrapper over BSD-style

sockets.

25

Bibliography

1]
2]

Plan 9 Programmer’s Manual, Volume 1. AT&T Bell Laboratories, 1995.

Intel 64 and IA-32 Architectures Software Developer’s Manual, volume 2A.
2006.

Daniel P. Bovet and Marco Cesati. Understanding the Linuz Kernel. O’Reilly,
2005.

T.J. Killian. Processes as files. Proc. of Summer USENIX, 1984.

Karl J. Lieberherr. Controlling the complexity of software designs. Proc. of

the Internal Conference on Software Engineering, 2004.

Rob Pike, Dave Presotto, Sean Doward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from bell labs. Technical
report, AT&T Bell Laboratories, 1995.

Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Win-
terbottom. The use of name spaces in plan 9. Operating Systems Rev., 27,

1993.

Rob Pike and Dennis M. Ritchie. The styx architecture for distributed systems.
Technical report, AT&T Bell Laboratories, 1999.

Rob Pike and Ken Thompson. Hello world (in unicode). Proc. of Winter
USENIX, 1993.

27

	1 Introduction
	1.1 Plan 9
	1.2 Linux
	1.3 What is Glendix?

	2 Review
	2.1 GNU vs. Plan 9
	2.2 Possible Approach
	2.2.1 Source Compatibility
	2.2.2 Binary Compatibility

	2.3 Steps of Operation

	3 Methodology
	3.1 Loader
	3.1.1 a.out
	3.1.2 How a File Gets Executed in Linux
	3.1.3 Registration of Binary Formats
	3.1.4 The Binary Parameters
	3.1.5 Memory Layout and Padding
	3.1.6 Top of Stack

	3.2 System Call Handler
	3.2.1 System Call Behavior in Linux
	3.2.2 System Call Behavior in Plan 9
	3.2.3 Programmed Exception Handling

	3.3 System Call Implementation

	4 Conclusions and Future Work

